Accueil/ expose #carousel1 li{ width:150px; height:180px; } #carousel2 li{ width:150px; height:180px; } The Complex Physics of Climate Change : Nonlinearity and Stochasticity
jeudi 26 janvier 2012
Loading the player... Descriptif

The Complex Physics of Climate Change : Nonlinearity and Stochasticity Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles .
"The first attempts at estimating climate sensitivity to changes in the forcing, over 30 years ago, assumed a climate system in equilibrium. More recently, the Intergovernmental Panel on Climate Change focused on estimates of climate evolution over the coming century ; these estimates still differ by several degrees, even for a given, prescribed scenario of increases in greenhouse gases and aerosol concentrations. This uncertainty, among others, motivates much of the following. The complex physics of climate change arises from the large number of components of the climate system — atmosphere, oceans, snow and ice, land cover, and the biota that live in them — as well as from the wealth of processes — physical, chemical and biological — occurring in each of the components and across them. This complexity has given rise to countless attempts to model each component and process separately, as well as to two overarching approaches to apprehend the complexity as a whole : deterministically nonlinear and stochastically linear. Call them the Lorenz and the Hasselmann approach, respectively, for short. We propose in this lecture a “grand unification” of these two approaches, provided by the theory of random dynamical systems. In particular, we apply this theory to the problem of climate sensitivity, and study the random attractors of nonlinear, stochastically perturbed systems, as well as the time-dependent invariant measures supported by these attractors. Results are presented for several simple climate models, from the classical Lorenz convection model to El Niño-Southern Oscillation models. Their attractors support random Sinai-Ruelle Bowen measures with nice physical properties. The response of these SRB measures to changes in poorly known model parameters is studied and implications for climate predictability are discussed. This work is the result of recent collaborations with M. D. Chekroun, D. Kondrashov, J. C. McWilliams, J. D. Neelin, E. Simonnet, S. Wang and I. Zaliapin, but represents the fruition of all I learned from tens of Ph. D. students, post-docs and other colleagues over the years."

Thèmes : Physique
Catégories: Colloquium / Séminaire général du département de physique
Mot-clés : Changement climatique, Stochastique

Voir aussi


Auteur(s) Michael Ghil
ENS - CERES ERTI
Professeur de géosciences

Plus sur cet auteur
Voir la fiche de l'auteur

Institutions : Ecole normale supérieure-PSL

Cursus :

Michael Ghil, Professeur des Sciences de la Planète au CERES-ERTI et professeur émerite de l’UCLA est lauréat 2012 de la médaille Alfred Wegener et Membre d’honneur de l’EGU.

Cliquer ICI pour fermer Annexes Téléchargements :
   - Télécharger la vidéo
   - Télécharger l'audio (mp3)

Dernière mise à jour : 12/03/2012

Liens utiles

Contact
Partenaires
Conditions d'utilisation
Mentions légales
Podcasts

CYCLES

> Colloquium DEC
> Les Ernest
> Les jeudis de l’archéologie
> Actualité critique
> Les jeudis de l’HPS
> Séminaire Médecine
   Humanités

> Journée Georges Bram
> Les lundis de la philo


> Les Nuits de l’ENS
> Semaine du cerveau
> Séminaire général du
   département d'informatique

> Séminaire général
   de physique

> Séminaire Transferts culturels
> La Voix d’un texte

PARTENARIATS

Louvre

France cuture

Institut Français

RESEAUX SOCIAUX

Retrouvez-nous sur Facebook

Twitter

Savoirs ENS
Tous droits réservés
@ 2011 ENS