Wolfram Computation Meets Knowledge

Wolfram Language & System Documentation Center Wolfram Language Home Page »

GeodesyData

GeodesyData["name","property"]

gives the value of the specified property for a named geodetic datum or reference ellipsoid.

GeodesyData[{a,b},"property"]

gives the value of the property for the ellipsoid with semimajor axis a and semiminor axis b.

GeodesyData[obj,{"property",coords}]

gives the value of the property at the specified coordinates.

Details

Examples

open allclose all

Basic Examples  (4)

Semiaxes of Clarke1866:

Semimajor axis and inverse flattening of GRS80:

Eccentricity of the GRS80 reference ellipsoid:

The parameters required to transform from ITRF00 to NAD83CORS96:

Scope  (17)

Names and Classes  (3)

List of all available named datums and reference ellipsoids:

Standard name of a datum in the Wolfram Language:

English name of a datum:

Alternate names:

List of available classes:

List of available named datums:

List of available reference ellipsoids:

List of direct datum transformations with available data:

Graph of those direct transformations:

Properties and Values for Reference Ellipsoids  (8)

List of available properties:

An ellipsoid of revolution is characterized by the semiaxes lengths {a,b} of a vertical section:

Or by the semimajor axis a and the inverse flattening :

The shape of an ellipse of semiaxes {a,b} can be described by the eccentricity :

The second eccentricity :

The flattening :

Or its inverse :

Specify an arbitrary oblate ellipsoid by giving the semiaxis lengths:

Specify the semimajor axis and the inverse flattening:

The Earth is nearly spherical:

Therefore, the various concepts of radius have similar values and are also similar to the semiaxes lengths:

With symbolic input:

On an ellipsoid, the curvature radius of a meridian varies with latitude, specified as a number in degrees:

Latitude can also be given as a Quantity angle:

Curvature radius of the normal section perpendicular to the meridian:

Curvature radius of a normal section of a given azimuth, measured clockwise from north:

Plot all possible values of the curvature radius of normal sections of the ellipsoid:

Convert from geodetic latitude to other types of latitude, and back to geodetic latitude:

Compute lengths along meridians. This is a quadrant (equator to pole):

Distance is not proportional to difference in geodetic latitude:

Properties and Values for Datums and Datum Transformations  (6)

Each datum has an associated reference ellipsoid:

Different datums may have the same reference ellipsoid but differ in position or orientation:

Most properties of a datum are just properties of its ellipsoid:

The WGS 84 datum has been updated but the ellipsoid parameters have been kept:

A transformation between datums is represented as a pair:

The relation between two datums is encoded in the seven parameters of a Helmert transformation:

The relation between some datums changes in time. These are the parameters at definition time:

These are their variations per year:

Applications  (1)

Perform a change of datum using GeoPositionXYZ. Take the {0,0} point in the "NAD27" datum:

Transform it to the "WGS72" datum:

In the new datum, the same point has different latitude and longitude values and nonzero height:

The origins of the datums are related by a translation, in meters:

There is also a change of length, in units of 10-8:

And a small rotation, encoded as a vector in milliarcseconds:

This is the seven-parameter Helmert transformation of the original coordinates:

Properties & Relations  (2)

Distance computations along meridians can also be performed with GeoDistance:

The result is independent of longitude:

Meridians are normal sections of zero azimuth:

The prime vertical curvature is that of the meridian-perpendicular normal section:

Wolfram Research (2008), GeodesyData, Wolfram Language function, https://reference.wolfram.com/language/ref/GeodesyData.html (updated 2020).

Text

Wolfram Research (2008), GeodesyData, Wolfram Language function, https://reference.wolfram.com/language/ref/GeodesyData.html (updated 2020).

CMS

Wolfram Language. 2008. "GeodesyData." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/GeodesyData.html.

APA

Wolfram Language. (2008). GeodesyData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeodesyData.html

BibTeX

@misc{reference.wolfram_2024_geodesydata, author="Wolfram Research", title="{GeodesyData}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/GeodesyData.html}", note=[Accessed: 18-May-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_geodesydata, organization={Wolfram Research}, title={GeodesyData}, year={2020}, url={https://reference.wolfram.com/language/ref/GeodesyData.html}, note=[Accessed: 18-May-2024 ]}

Top